Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/75522
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKhwanchai Kunwaien_US
dc.contributor.authorFubao Xien_US
dc.contributor.authorGeorge Yinen_US
dc.contributor.authorChao Zhuen_US
dc.date.accessioned2022-10-16T07:00:28Z-
dc.date.available2022-10-16T07:00:28Z-
dc.date.issued2022-10-01en_US
dc.identifier.issn14320606en_US
dc.identifier.issn00954616en_US
dc.identifier.other2-s2.0-85133651972en_US
dc.identifier.other10.1007/s00245-022-09881-0en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85133651972&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/75522-
dc.description.abstractMotivated by applications in natural resource management, risk management, and finance, this paper is focused on an ergodic two-sided singular control problem for a general one-dimensional diffusion process. The control is given by a bounded variation process. Under some mild conditions, the optimal reward value as well as an optimal control policy are derived by the vanishing discount method. Moreover, the Abelian and Cesàro limits are established. Then a direct solution approach is provided at the end of the paper.en_US
dc.subjectMathematicsen_US
dc.titleOn an Ergodic Two-Sided Singular Control Problemen_US
dc.typeJournalen_US
article.title.sourcetitleApplied Mathematics and Optimizationen_US
article.volume86en_US
article.stream.affiliationsUniversity of Connecticuten_US
article.stream.affiliationsUniversity of Wisconsin-Milwaukeeen_US
article.stream.affiliationsBeijing Institute of Technologyen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.