Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/74979
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJulius Rajulaen_US
dc.contributor.authorSarayut Pittarateen_US
dc.contributor.authorNakarin Suwannarachen_US
dc.contributor.authorJaturong Kumlaen_US
dc.contributor.authorAneta A. Ptaszynskaen_US
dc.contributor.authorMalee Thungrabeaben_US
dc.contributor.authorSupamit Mekchayen_US
dc.contributor.authorPatcharin Krutmuangen_US
dc.date.accessioned2022-10-16T06:55:59Z-
dc.date.available2022-10-16T06:55:59Z-
dc.date.issued2021-12-01en_US
dc.identifier.issn2309608Xen_US
dc.identifier.other2-s2.0-85121833054en_US
dc.identifier.other10.3390/jof7121073en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85121833054&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/74979-
dc.description.abstractFall armyworm, Spodoptera frugiperda, entered Thailand in late 2018 and has now spread in several regions, with devastating effects in maize and rice production, which are some of the most important cereals in the world. Since then, farmers have utilized the available chemical insecticides to try to control it, but their efforts have been futile. Instead, they have ended up using extraordinary dosages, hence threatening non-target species and other fauna and flora, as well as being costly. In this regard, research has been ongoing, aiming to come up with eco-friendly solutions for this insect. We surveyed and collected various isolates of native entomopathogenic fungi intending to test their efficacy against fall armyworm. Six isolates of entomopathogenic fungi were obtained and identified to Beauveria bassiana based on morphological characteristics and multi-gene phylogenetic analyses. Thereafter, the six isolates of B. bassiana were used to perform efficacy experiments against fall armyworm. Additionally, the glycosyl transferase-like protein 1 (GAS1) gene was analyzed. Consequently, all the isolates showed efficacy against S. frugiperda, with isolate BCMU6 causing up to 91.67% mortality. Further, molecular analysis revealed that all the isolates possess the GAS1 gene, which contributed to their virulence against the insect. This is the first report of utilizing native entomopathogenic B. bassiana to manage S. frugiperda in Thailand, with the revelation of GAS1 as a factor in inducing virulence and cuticle penetration. This study has provided valuable information on the potential development of Beauveria bassiana as an eco-friendly bioinsecticide for the management of fall armyworm in Thailand.en_US
dc.subjectAgricultural and Biological Sciencesen_US
dc.subjectMedicineen_US
dc.titleEvaluation of native entomopathogenic fungi for the control of fall armyworm (Spodoptera frugiperda) in thailand: A sustainable way for eco-friendly agricultureen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Fungien_US
article.volume7en_US
article.stream.affiliationsRajamangala University of Technology Lannaen_US
article.stream.affiliationsMaria Curie-Sklodowska University in Lublinen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.