Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/74880
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRami Ahmad El-Nabulsien_US
dc.contributor.authorWaranont Anukoolen_US
dc.date.accessioned2022-10-16T06:52:12Z-
dc.date.available2022-10-16T06:52:12Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn19437641en_US
dc.identifier.issn15361055en_US
dc.identifier.other2-s2.0-85131064074en_US
dc.identifier.other10.1080/15361055.2022.2045531en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131064074&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/74880-
dc.description.abstractThe main aim of this paper is to discuss the influence of fractal dimensions on the behavior of the solutions of the Grad-Shafranov equation. Our study is based on the product-like fractal measure approach constructed by Li and Ostoja-Starzewski in their attempt to explore anisotropic fractal continuum media. The fractal Grad-Shafranov equation gives the possibility to analyze, in a toroidal fusion reactor, the plasma equilibrium in fractal dimensions. Examples of the exact equilibrium solution are given for both the vacuum case outside the plasma and the toroidally shaped spheromak. Note: PACS numbers 05.45.Df: Fractals; 28.52.−s: Fusion reactors; 52.30.Cv: Magnetohydrodynamics; and 52.55.Ip: Spheromaks.en_US
dc.subjectEnergyen_US
dc.subjectEngineeringen_US
dc.subjectMaterials Scienceen_US
dc.titleGrad-Shafranov Equation in Fractal Dimensionsen_US
dc.typeJournalen_US
article.title.sourcetitleFusion Science and Technologyen_US
article.volume78en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsMathematics and Physics Divisionsen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.