Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/74786
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThongchai Botmarten_US
dc.contributor.authorWajaree Weeraen_US
dc.contributor.authorArthit Hongsrien_US
dc.contributor.authorNarongsak Yothaen_US
dc.contributor.authorPiyapong Niamsupen_US
dc.date.accessioned2022-10-16T06:49:10Z-
dc.date.available2022-10-16T06:49:10Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn21693536en_US
dc.identifier.other2-s2.0-85131718441en_US
dc.identifier.other10.1109/ACCESS.2022.3179573en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85131718441&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/74786-
dc.description.abstractThis paper is concerned with the dissipative problem based pinning sampled-data control scheme. We investigate the problem for function projective synchronization of neural networks with hybrid couplings and time-varying delays. The main purpose is focused on designing a pinning sampled-data function projective synchronization controller such that the resulting function projective synchronization neural networks are stable and satisfy a strictly H, L2-L , passivity and dissipativity performance by setting parameters in the general performance index. It is assumed that the parameter uncertainties are norm-bounded. By construction of an appropriate Lyapunov-Krasovskii containing single, double and triple integrals, which fully utilize information of the neuron activation function and use refined Jensen's inequality for checking the passivity of the addressed neural networks are established in linear matrix inequalities (LMIs). This result is less conservative than the existing results in literature. It can be checked numerically using the effective LMI toolbox in MATLAB. Numerical examples are provided to demonstrate the effectiveness and the merits of the proposed methods.en_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMaterials Scienceen_US
dc.titleDissipative Pinning Sampled-Data Control for Function Projective Synchronization of Neural Networks With Hybrid Couplings and Time-Varying Delaysen_US
dc.typeJournalen_US
article.title.sourcetitleIEEE Accessen_US
article.volume10en_US
article.stream.affiliationsRajamangala University of Technology Isanen_US
article.stream.affiliationsKhon Kaen Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.