Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/74761
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChatchai Khiewngamdeeen_US
dc.contributor.authorNapon Hongsakulvasuen_US
dc.contributor.authorAsama Liammukdaen_US
dc.date.accessioned2022-10-16T06:48:59Z-
dc.date.available2022-10-16T06:48:59Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn21984190en_US
dc.identifier.issn21984182en_US
dc.identifier.other2-s2.0-85135511962en_US
dc.identifier.other10.1007/978-3-030-97273-8_47en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85135511962&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/74761-
dc.description.abstractThe purpose of this research is to widen previous studies by looking at the relationship between the Google Search Volume Index: GSVI and foreign currency rates volatility. We also test whether Google search queries can provide effective and efficient ways to predict exchange rates. Firstly, we compare the effective prediction of the traditional model and the new model using GAM method, which is allowed both linear and non-linear relationship in the model. Finally, we employ Granger Causality test to test if GSVI is causal to exchange rate volatility. The results show that the GAM model is more efficient than the classical linear model and it has significantly increased the forecasting potential. However, the intention of adding investor attention variables is insufficient to prove that Google trend factors can improve forecast accuracy.en_US
dc.subjectComputer Scienceen_US
dc.subjectDecision Sciencesen_US
dc.subjectEconomics, Econometrics and Financeen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleNonlinear Forecasting of Exchange Rate Volatility Using Google Searchen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Systems, Decision and Controlen_US
article.volume429en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.