Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/74751
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPayap Tarkhamthamen_US
dc.contributor.authorWoraphon Yamakaen_US
dc.date.accessioned2022-10-16T06:48:55Z-
dc.date.available2022-10-16T06:48:55Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn21984190en_US
dc.identifier.issn21984182en_US
dc.identifier.other2-s2.0-85135535197en_US
dc.identifier.other10.1007/978-3-030-97273-8_28en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85135535197&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/74751-
dc.description.abstractThis study aims to estimate the kink regression model with the small sample size since the small sample size will lead to an undetermined or ill-posed problem. Thus, to solve these problems, the generalized maximum entropy (GME), based Renyi measure is proposed. Specifically, we replace the Shannon entropy with Renyi entropy to GME estimator. Monte Carlo simulation and the real data are used to evaluate the performance of Renyi GME estimator in Kink regression model. The results demonstrate that Renyi measure does not perform better than Shannon measure when the error is assumed to be normal. However, it is comparable to the Shannon entropy when the errors are assumed to be uniform, chi-square, and Student-t distributions. We then conduct two application studies to validate the performance of the Renyi GME and similar performance is obtained. Thus, we increase the number of order α to be larger than 2 and the result indicates that our high-order Renyi GME is clearly better than the traditional Shannon GME.en_US
dc.subjectComputer Scienceen_US
dc.subjectDecision Sciencesen_US
dc.subjectEconomics, Econometrics and Financeen_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleA Generalized Maximum Renyi Entropy Approach in Kink Regression Modelen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Systems, Decision and Controlen_US
article.volume429en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.