Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/74733
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHung T. Nguyenen_US
dc.contributor.authorOlga Koshelevaen_US
dc.contributor.authorVladik Kreinovichen_US
dc.date.accessioned2022-10-16T06:48:46Z-
dc.date.available2022-10-16T06:48:46Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn10987584en_US
dc.identifier.other2-s2.0-85138768623en_US
dc.identifier.other10.1109/FUZZ-IEEE55066.2022.9882674en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85138768623&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/74733-
dc.description.abstractIn many practical situations, we need to process data under fuzzy uncertainty: we have fuzzy information about the algorithm's input, and we want to find the resulting information about the algorithm's output. It is known that this problem can be reduced to computing the range of the algorithm over several (A) alpha-cuts of the input. However, a straightforward application of this idea requires A times longer computation time than each range estimation-and for complex data processing algorithms, each range computation is already time-consuming. In this paper, we show how to compute all the desired ranges much faster.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleData Processing under Fuzzy Uncertainty: Towards More Efficient Algorithmsen_US
dc.typeConference Proceedingen_US
article.title.sourcetitleIEEE International Conference on Fuzzy Systemsen_US
article.volume2022-Julyen_US
article.stream.affiliationsThe University of Texas at El Pasoen_US
article.stream.affiliationsNew Mexico State Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.