Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/74720
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorBac T. Nguyenen_US
dc.contributor.authorParavee Maneejuken_US
dc.date.accessioned2022-10-16T06:48:19Z-
dc.date.available2022-10-16T06:48:19Z-
dc.date.issued2022-08-01en_US
dc.identifier.issn19305338en_US
dc.identifier.issn19305346en_US
dc.identifier.other2-s2.0-85118749449en_US
dc.identifier.other10.3934/amc.2020123en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85118749449&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/74720-
dc.description.abstractFor any odd prime p, the structures and duals of λ-constacyclic codes of length 8ps over R = Fpm + uFpm are completely determined for all unit λ of the form λ = ξl ∈ Fpm, where l is even. In addition, the algebraic structures of all cyclic and negacyclic codes of length 8ps over R are established in term of their generator polynomials. Dual codes of all cyclic and negacyclic codes of length 8ps over R are also investigated. Furthermore, we give the number of codewords in each of those cyclic and negacyclic codes. We also obtain the number of cyclic and negacyclic codes of length 8ps over R.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleCONSTACYCLIC CODES OF LENGTH 8p<sup>s</sup> OVER F<inf>p</inf>m + uF<inf>p</inf>men_US
dc.typeJournalen_US
article.title.sourcetitleAdvances in Mathematics of Communicationsen_US
article.volume16en_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsThai Nguyen University of Economics and Business Administrationen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.