Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/74711
Title: Do We Need a Specific Corpus and Multiple High-Performance GPUs for Training the BERT Model? An Experiment on COVID-19 Dataset
Authors: Nontakan Nuntachit
Prompong Sugunnasil
Authors: Nontakan Nuntachit
Prompong Sugunnasil
Keywords: Computer Science;Engineering
Issue Date: 1-Sep-2022
Abstract: The COVID-19 pandemic has impacted daily lives around the globe. Since 2019, the amount of literature focusing on COVID-19 has risen exponentially. However, it is almost impossible for humans to read all of the studies and classify them. This article proposes a method of making an unsupervised model called a zero-shot classification model, based on the pre-trained BERT model. We used the CORD-19 dataset in conjunction with the LitCovid database to construct new vocabulary and prepare the test dataset. For NLI downstream task, we used three corpora: SNLI, MultiNLI, and MedNLI. We significantly reduced the training time by 98.2639% to build a task-specific machine learning model, using only one Nvidia Tesla V100. The final model can run faster and use fewer resources than its comparators. It has an accuracy of 27.84%, which is lower than the best-achieved accuracy by 6.73%, but it is comparable. Finally, we identified that the tokenizer and vocabulary more specific to COVID-19 could not outperform the generalized ones. Additionally, it was found that BART architecture affects the classification results.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85138627546&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/74711
ISSN: 25044990
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.