Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/73180
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPittayarat Intasuwanen_US
dc.contributor.authorVimonrath Taranopen_US
dc.contributor.authorPasuk Mahakkanukrauhen_US
dc.date.accessioned2022-05-27T08:36:34Z-
dc.date.available2022-05-27T08:36:34Z-
dc.date.issued2022-02-01en_US
dc.identifier.issn07179502en_US
dc.identifier.issn07179367en_US
dc.identifier.other2-s2.0-85127044149en_US
dc.identifier.other10.4067/S0717-95022022000100107en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127044149&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/73180-
dc.description.abstractSex assessment is an important process in forensic identification. A pelvis is the best skeletal element for identifying sexes due to its sexually dimorphic morphology. This study aimed to compare the accuracy of the visual assessment in dry bones as well as 2D images and to test the accuracy of using a deep convolutional neural network (GoogLeNet) for increasing the performance of a sex determination tool in a Thai population. The total samples consisted of 250 left os coxa that were divided into 200 as a 'training' group (100 females, 100 males) and 50 as a 'test' group. In this study, we observed the auricular area, both hands-on and photographically, for visual assessment and classified the images using GoogLeNet. The intra-inter observer reliabilities were tested for each visual assessment method. Additionally, the validation and test accuracies were 85, 72 percent and 79.5, 60 percent, for dry bone and 2D image methods, respectively. The intra-and inter-observer reliabilities showed moderate agreement (Kappa = 0.54-0.67) for both visual assessments. The deep convolutional neural network method showed high accuracy for both validation and test sets (93.33 percent and 88 percent, respectively). Deep learning performed better in classifying sexes from auricular area images than other visual assessment methods. This study suggests that deep learning has advantages in terms of sex classification in Thai samples.en_US
dc.subjectMedicineen_US
dc.titleA Comparative Study of Visual Assessment Between Dry Bone, 2-Dimensional Photograph, and Deep Learning Methods in Sex Classification on the Auricular Area of the Os Coxae in a Thai Populationen_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Morphologyen_US
article.volume40en_US
article.stream.affiliationsFaculty of Medicine, Chiang Mai Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.