Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/73068
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Jaturon Wattanapan | en_US |
dc.contributor.author | Watchareepan Atiponrat | en_US |
dc.contributor.author | Santi Tasena | en_US |
dc.contributor.author | Teerapong Suksumran | en_US |
dc.date.accessioned | 2022-05-27T08:35:12Z | - |
dc.date.available | 2022-05-27T08:35:12Z | - |
dc.date.issued | 2022-01-01 | en_US |
dc.identifier.issn | 18434401 | en_US |
dc.identifier.issn | 15842851 | en_US |
dc.identifier.other | 2-s2.0-85120739469 | en_US |
dc.identifier.other | 10.37193/CJM.2022.01.19 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85120739469&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/73068 | - |
dc.description.abstract | Haar’s theorem ensures a unique nontrivial regular Borel measure on a locally compact Hausdorff topological group, up to multiplication by a positive constant. In this article, we extend Haar’s theorem to the case of locally compact Hausdorff strongly topological gyrogroups. We simultaneously prove the existence and uniqueness of a Haar measure on a locally compact Hausdorff strongly topological gyrogroup, using the method of Steinlage. We then find a natural relationship between Haar measures on gyrogroups and on their related groups. As an application of this result, we study some properties of a convolution-like operation on the space of Haar integrable functions defined on a locally compact Hausdorff strongly topological gyrogroup. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Extension of haar’s theorem | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Carpathian Journal of Mathematics | en_US |
article.volume | 38 | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.