Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/73067
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPongsakorn Yotkaewen_US
dc.contributor.authorHabib Ur Rehmanen_US
dc.contributor.authorBancha Panyanaken_US
dc.contributor.authorNuttapol Pakkaranangen_US
dc.date.accessioned2022-05-27T08:35:11Z-
dc.date.available2022-05-27T08:35:11Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn18434401en_US
dc.identifier.issn15842851en_US
dc.identifier.other2-s2.0-85120815701en_US
dc.identifier.other10.37193/CJM.2022.01.20en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85120815701&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/73067-
dc.description.abstractIn this paper, we study the numerical solution of the variational inequalities involving quasi-monotone operators in infinite-dimensional Hilbert spaces. We prove that the iterative sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities converges strongly to a solu-tion. The main advantage of the proposed iterative schemes is that it uses a monotone and non-monotone step size rule based on operator knowledge rather than its Lipschitz constant or some other line search method.en_US
dc.subjectMathematicsen_US
dc.titleHalpern subgradient extragradient algorithm for solving quasimonotone variational inequality problemsen_US
dc.typeJournalen_US
article.title.sourcetitleCarpathian Journal of Mathematicsen_US
article.volume38en_US
article.stream.affiliationsPhetchabun Rajabhat Universityen_US
article.stream.affiliationsKhon Kaen Universityen_US
article.stream.affiliationsKing Mongkut's University of Technology Thonburien_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.