Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/73067
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Pongsakorn Yotkaew | en_US |
dc.contributor.author | Habib Ur Rehman | en_US |
dc.contributor.author | Bancha Panyanak | en_US |
dc.contributor.author | Nuttapol Pakkaranang | en_US |
dc.date.accessioned | 2022-05-27T08:35:11Z | - |
dc.date.available | 2022-05-27T08:35:11Z | - |
dc.date.issued | 2022-01-01 | en_US |
dc.identifier.issn | 18434401 | en_US |
dc.identifier.issn | 15842851 | en_US |
dc.identifier.other | 2-s2.0-85120815701 | en_US |
dc.identifier.other | 10.37193/CJM.2022.01.20 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85120815701&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/73067 | - |
dc.description.abstract | In this paper, we study the numerical solution of the variational inequalities involving quasi-monotone operators in infinite-dimensional Hilbert spaces. We prove that the iterative sequence generated by the proposed algorithm for the solution of quasimonotone variational inequalities converges strongly to a solu-tion. The main advantage of the proposed iterative schemes is that it uses a monotone and non-monotone step size rule based on operator knowledge rather than its Lipschitz constant or some other line search method. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Halpern subgradient extragradient algorithm for solving quasimonotone variational inequality problems | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Carpathian Journal of Mathematics | en_US |
article.volume | 38 | en_US |
article.stream.affiliations | Phetchabun Rajabhat University | en_US |
article.stream.affiliations | Khon Kaen University | en_US |
article.stream.affiliations | King Mongkut's University of Technology Thonburi | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.