Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/73054
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorPramod Kumar Kewaten_US
dc.contributor.authorSarika Kushwahaen_US
dc.contributor.authorWoraphon Yamakaen_US
dc.date.accessioned2022-05-27T08:34:56Z-
dc.date.available2022-05-27T08:34:56Z-
dc.date.issued2022-02-01en_US
dc.identifier.issn18652085en_US
dc.identifier.issn15985865en_US
dc.identifier.other2-s2.0-85103389172en_US
dc.identifier.other10.1007/s12190-021-01526-9en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103389172&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/73054-
dc.description.abstractIn this paper, we classify all self-dual λ-constacyclic codes of length 2 s over the finite commutative local ring Ru2,v2,2m=F2m[u,v]/⟨u2,v2,uv-vu⟩ corresponding to units of the forms λ= α+ γv+ δuv, α+ βu+ δuv, α+ βu+ γv+ δuv, where α,β,γ∈F2m∗ and δ∈F2m. Moreover, the Hamming distance of these λ-constacyclic codes are completely determined.en_US
dc.subjectMathematicsen_US
dc.titleSelf-dual constacyclic codes of length 2 <sup>s</sup> over the ring F<sup>2m</sup>[u,v]/⟨<sup>u2</sup>,<sup>v2</sup>,uv-vu⟩en_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Applied Mathematics and Computingen_US
article.volume68en_US
article.stream.affiliationsKent State Universityen_US
article.stream.affiliationsIndian Institute of Technology (Indian School of Mines), Dhanbaden_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.