Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/73054
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Hai Q. Dinh | en_US |
dc.contributor.author | Pramod Kumar Kewat | en_US |
dc.contributor.author | Sarika Kushwaha | en_US |
dc.contributor.author | Woraphon Yamaka | en_US |
dc.date.accessioned | 2022-05-27T08:34:56Z | - |
dc.date.available | 2022-05-27T08:34:56Z | - |
dc.date.issued | 2022-02-01 | en_US |
dc.identifier.issn | 18652085 | en_US |
dc.identifier.issn | 15985865 | en_US |
dc.identifier.other | 2-s2.0-85103389172 | en_US |
dc.identifier.other | 10.1007/s12190-021-01526-9 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85103389172&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/73054 | - |
dc.description.abstract | In this paper, we classify all self-dual λ-constacyclic codes of length 2 s over the finite commutative local ring Ru2,v2,2m=F2m[u,v]/⟨u2,v2,uv-vu⟩ corresponding to units of the forms λ= α+ γv+ δuv, α+ βu+ δuv, α+ βu+ γv+ δuv, where α,β,γ∈F2m∗ and δ∈F2m. Moreover, the Hamming distance of these λ-constacyclic codes are completely determined. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Self-dual constacyclic codes of length 2 <sup>s</sup> over the ring F<sup>2m</sup>[u,v]/⟨<sup>u2</sup>,<sup>v2</sup>,uv-vu⟩ | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Applied Mathematics and Computing | en_US |
article.volume | 68 | en_US |
article.stream.affiliations | Kent State University | en_US |
article.stream.affiliations | Indian Institute of Technology (Indian School of Mines), Dhanbad | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.