Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/73041
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSamruam Chongcharoenen_US
dc.contributor.authorPawat Paksaranuwaten_US
dc.contributor.authorKunjira Kingphaien_US
dc.date.accessioned2022-05-27T08:34:46Z-
dc.date.available2022-05-27T08:34:46Z-
dc.date.issued2022-04-01en_US
dc.identifier.issn23510676en_US
dc.identifier.issn16859057en_US
dc.identifier.other2-s2.0-85127766712en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127766712&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/73041-
dc.description.abstractIn this paper, a novel multivariate test for analyzing multivariate datasets with fewer observations than the dimension is developed. More specifically, we consider the problem of the one-sided hypothesis testing of mean vectors from two multivariate normal populations when the covariance matrices are commonly unknown. As we knew that on high-dimensional data, the sample covariance 2 matrix is singular, a new test is proposed based on the classical Hotelling’s T test and the idea of keeping more information from the sample covariance matrices as much as possible. The simulation results showed that the proposed test gave the attained significance level of the proposed test close to setting nominal significance level satisfactorily and also gave high the attained power of the test. Furthermore, the performance of the proposed test is also shown by an empirical analysis of the DNA microarray data set.en_US
dc.subjectMathematicsen_US
dc.titleOne-Sided Multivariate Test for Two Population Means with Common Unknown Covariance Matrices of High-Dimensional Dataen_US
dc.typeJournalen_US
article.title.sourcetitleThailand Statisticianen_US
article.volume20en_US
article.stream.affiliationsChiang Mai Rajabhat Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.