Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/73034
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSanti Tasenaen_US
dc.date.accessioned2022-05-27T08:34:43Z-
dc.date.available2022-05-27T08:34:43Z-
dc.date.issued2022-05-15en_US
dc.identifier.issn10960813en_US
dc.identifier.issn0022247Xen_US
dc.identifier.other2-s2.0-85123001178en_US
dc.identifier.other10.1016/j.jmaa.2022.126007en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85123001178&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/73034-
dc.description.abstractIn this work, we prove a central limit theorem for the empirical subcopula processes by embedding the space of subcopulas in the space of Lebesgue integrable functions. The central limit theorem is then followed by the functional delta method. We also provide an example to demonstrate that convergence under the Chebyshev distance should not be expected.en_US
dc.subjectMathematicsen_US
dc.titleCentral limit theorem for subcopulas under the Manhattan distanceen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Mathematical Analysis and Applicationsen_US
article.volume509en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.