Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/73013
Full metadata record
DC FieldValueLanguage
dc.contributor.authorM. Arshaden_US
dc.contributor.authorN. U. Saqiben_US
dc.contributor.authorG. Roohen_US
dc.contributor.authorN. Chanithimaen_US
dc.contributor.authorF. Zamanen_US
dc.contributor.authorM. Asifen_US
dc.contributor.authorH. J. Kimen_US
dc.contributor.authorS. Kothanen_US
dc.contributor.authorSana ul Haqen_US
dc.contributor.authorJ. Kaewkhaoen_US
dc.date.accessioned2022-05-27T08:33:44Z-
dc.date.available2022-05-27T08:33:44Z-
dc.date.issued2022-06-15en_US
dc.identifier.issn00223093en_US
dc.identifier.other2-s2.0-85126917689en_US
dc.identifier.other10.1016/j.jnoncrysol.2022.121570en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85126917689&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/73013-
dc.description.abstractPraseodymium doped potassium aluminum phosphate (P2O5-K2O-Al2O3) glasses with various proportions of the Pr3+ ions were synthesized using a facile melt-quenching method. The prepared modified (P2O5-K2O3-Al2O3) glasses were characterized using techniques such as X-ray diffraction (XRD), Fourier transforms infrared spectroscopy (FTIR), absorption spectra, and photoluminescence (PL). The XRD results confirmed the amorphous nature of all the prepared (PKAP) glass samples. The presence of various bending and stretching vibrations of the PKAP glass network was identified from the FTIR analysis. The band structure and energy gap of PKAP glass materials have been found from absorption spectra. A total of eight absorption peaks were observed, three absorption peaks are in the violet region of the spectrum, while an isolated absorption band is in the visible region, and the remaining five intense bands are in the near infrared region. The transition 3H4→3P2 (446 nm) is a hypersensitive transition. The decrease in energy band gap (Egopt) confirms the disorderness in the PKAP glass structure. The PL results indicated five broadband emissions, whereas an intense transition of 1D2→3H4 at wavelength 604 nm corresponding to the reddish-orange region was observed. The present study elaborates that the emission quenching for all the observed bands occurs at a molar proportion of 1.0 mol%. The x, y coordinates of the as prepared glass samples passes through the reddish orange regions of the spectrum in comparison to the CIE 1931 diagram. This study demonstrates the suitability of these P2O5-K2O-Al2O3 glasses for orange LED and their probable applications in the optoelectronics field.en_US
dc.subjectMaterials Scienceen_US
dc.subjectPhysics and Astronomyen_US
dc.titleSpectroscopic and photoluminescence properties of praseodymium doped potassium aluminum phosphate (P<inf>2</inf>O<inf>5</inf>-K<inf>2</inf>O-Al<inf>2</inf>O<inf>3</inf>) glasses for optoelectronics applications.en_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Non-Crystalline Solidsen_US
article.volume586en_US
article.stream.affiliationsAbdul Wali Khan University Mardanen_US
article.stream.affiliationsUniversity of Peshawaren_US
article.stream.affiliationsNakhon Pathom Rajabhat Universityen_US
article.stream.affiliationsKyungpook National Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsUniversity of Buneren_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.