Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/72771
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLkhagvadorj Munkhdalaien_US
dc.contributor.authorTsendsuren Munkhdalaien_US
dc.contributor.authorVan Huy Phamen_US
dc.contributor.authorMeijing Lien_US
dc.contributor.authorKeun Ho Ryuen_US
dc.contributor.authorNipon Theera-Umponen_US
dc.date.accessioned2022-05-27T08:29:28Z-
dc.date.available2022-05-27T08:29:28Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn21693536en_US
dc.identifier.other2-s2.0-85123687558en_US
dc.identifier.other10.1109/ACCESS.2022.3145951en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85123687558&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/72771-
dc.description.abstractExplaining dynamic relationships between input and output variables is one of the most important issues in time dependent domains such as economic, finance and so on. In this work, we propose a novel locally adaptive interpretable deep learning architecture that is augmented by recurrent neural networks to provide model explainability and high predictive accuracy for time-series data. The proposed model relies on two key aspects. First, the base model should be a simple interpretable model. In this step, we obtain our base model using a simple linear regression and statistical test. Second, we use recurrent neural networks to re-parameterize our base model to make the regression coefficients adaptable for each time step. Our experimental results on public benchmark datasets showed that our model not only achieves better predictive performance than the state-of-the-art baselines, but also discovers the dynamic relationship between input and output variables.en_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMaterials Scienceen_US
dc.titleRecurrent Neural Network-Augmented Locally Adaptive Interpretable Regression for Multivariate Time-Series Forecastingen_US
dc.typeJournalen_US
article.title.sourcetitleIEEE Accessen_US
article.volume10en_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsShanghai Maritime Universityen_US
article.stream.affiliationsGoogle LLCen_US
article.stream.affiliationsChungbuk National Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.