Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/72766
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZulqurnain Sabiren_US
dc.contributor.authorManoj Guptaen_US
dc.contributor.authorMuhammad Asif Zahoor Rajaen_US
dc.contributor.authorN. Seshagiri Raoen_US
dc.contributor.authorMuhammad Mubashar Hussainen_US
dc.contributor.authorFaisal Alanazien_US
dc.contributor.authorOrawit Thinnukoolen_US
dc.contributor.authorPattaraporn Khuwuthyakornen_US
dc.date.accessioned2022-05-27T08:29:25Z-
dc.date.available2022-05-27T08:29:25Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn15462226en_US
dc.identifier.issn15462218en_US
dc.identifier.other2-s2.0-85125410061en_US
dc.identifier.other10.32604/cmc.2022.021462en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125410061&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/72766-
dc.description.abstractThe purpose of the current investigations is to solve the nonlinear dynamics based on the nervous stomach model (NSM) using the supervised neural networks (SNNs) along with the novel features of Levenberg- Marquardt backpropagation technique (LMBT), i.e., SNNs-LMBT. The SNNs-LMBT is implemented with three different types of sample data, authentication, testing and training. The ratios for these statistics to solve three different variants of the nonlinear dynamics of the NSM are designated 75% for training, 15% for validation and 10% for testing, respectively. For the numerical measures of the nonlinear dynamics of the NSM, the Runge- Kutta scheme is implemented to form the reference dataset. The attained numerical form of the nonlinear dynamics of the NSM through the SNNs- LMBT is implemented in the reduction of the mean square error (MSE). For the exactness, competence, reliability and efficiency of the proposed SNNs-LMBT, the numerical actions are capable using the proportional arrangements through the features of the MSE results, error histograms (EHs), regression and correlation.en_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectMaterials Scienceen_US
dc.subjectMathematicsen_US
dc.titleNonlinear Dynamics of Nervous Stomach Model Using Supervised Neural Networksen_US
dc.typeJournalen_US
article.title.sourcetitleComputers, Materials and Continuaen_US
article.volume72en_US
article.stream.affiliationsJECRC Universityen_US
article.stream.affiliationsPrince Sattam Bin Abdulaziz Universityen_US
article.stream.affiliationsHazara University Pakistanen_US
article.stream.affiliationsUniversity of the Punjaben_US
article.stream.affiliationsNational Yunlin University of Science and Technologyen_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsAdama Science and Technology Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.