Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/72763
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKittawit Autchariyapanitkulen_US
dc.contributor.authorTerdthiti Chitkasameen_US
dc.contributor.authorNamchok Chimprangen_US
dc.contributor.authorChaiwat Klinlampuen_US
dc.date.accessioned2022-05-27T08:29:24Z-
dc.date.available2022-05-27T08:29:24Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-85126518478en_US
dc.identifier.other10.1007/978-3-030-98018-4_29en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85126518478&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/72763-
dc.description.abstractThe goal of this study is to examine the predictive power of real price indexes and Google Trend in forecasting the inflation volatility in three nations (the USA, Japan, and the UK). The AIC, BIC, and RMSE are used to select the best GARCH-type models with the most appropriate predictors. The overall result shows that the GARCH model with the skew-student distribution is the most effective model in capturing the inflation volatility. Furthermore, this study reveals that the commodity price index is the strongest predictor variable of the inflation volatility. We also find that the financial crisis and health crisis decisively affect the inflation volatility in the United States of America and Japan.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleInvestigating the Predictive Power of Google Trend and Real Price Indexes in Forecasting the Inflation Volatilityen_US
dc.typeBook Seriesen_US
article.title.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
article.volume13199 LNAIen_US
article.stream.affiliationsMaejo Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.