Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/72757
Full metadata record
DC FieldValueLanguage
dc.contributor.authorFalk T. Gerpotten_US
dc.contributor.authorSebastian Langen_US
dc.contributor.authorTobias Reggelinen_US
dc.contributor.authorHartmut Zadeken_US
dc.contributor.authorPoti Chaopaisarnen_US
dc.contributor.authorSakgasem Ramingwongen_US
dc.date.accessioned2022-05-27T08:29:05Z-
dc.date.available2022-05-27T08:29:05Z-
dc.date.issued2022-01-01en_US
dc.identifier.issn18770509en_US
dc.identifier.other2-s2.0-85127829514en_US
dc.identifier.other10.1016/j.procs.2022.01.256en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85127829514&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/72757-
dc.description.abstractThe paper introduces an approach to apply reinforcement learning (RL) for production scheduling in a two-stage hybrid flow shop (THFS) production system. The Advantage-Actor Critic (A2C) method is used to train multiple agents to minimize the total tardiness and makespan of a production program. The two-stage hybrid flow shop scheduling problem is a NP-hard combinatorial optimization problem that describes a production system with two stages, each consisting of a set of parallel machines. Our concept combines a Discrete-Event Simulation with a pre-implemented RL algorithm using Stable Baselines3. Since similar research often lacks concrete implementation information, the configuration of the OpenAI Gym interface and the agent-environment interaction is presented.en_US
dc.subjectComputer Scienceen_US
dc.titleIntegration of the A2C Algorithm for Production Scheduling in a Two-Stage Hybrid Flow Shop Environmenten_US
dc.typeConference Proceedingen_US
article.title.sourcetitleProcedia Computer Scienceen_US
article.volume200en_US
article.stream.affiliationsOtto von Guericke University of Magdeburgen_US
article.stream.affiliationsFraunhofer-Institut für Fabrikbetrieb und -automatisierung IFFen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.