Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/72553
Full metadata record
DC FieldValueLanguage
dc.contributor.authorVachira Choommongkolen_US
dc.contributor.authorKhanittha Puntureeen_US
dc.contributor.authorPiyatida Klumphuen_US
dc.contributor.authorParintip Rattanaburien_US
dc.contributor.authorPuttinan Meepowpanen_US
dc.contributor.authorPanawan Suttiarpornen_US
dc.date.accessioned2022-05-27T08:26:40Z-
dc.date.available2022-05-27T08:26:40Z-
dc.date.issued2022-02-01en_US
dc.identifier.issn14203049en_US
dc.identifier.other2-s2.0-85125189578en_US
dc.identifier.other10.3390/molecules27041397en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125189578&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/72553-
dc.description.abstract2′,4′-Dihydroxy-6′-methoxy-3′,5′-dimethyl chalcone (DMC) is a biological flavonoid that is present in the fruits of Syzygium nervosum (Ma-Kiang in Thai). Microwave-assisted extraction (MAE), which utilizes microwave radiation to heat the extraction solvent quickly and effectively, was used to recover DMC-rich extract from Syzygium nervosum fruit. To determine the DMC content, a highly accurate and precise HPLC technique was developed. The influences of MAE conditions, including the solid–liquid ratio, microwave power, and microwave duration on the content of DMC, were sequentially employed by a single factor investigation and response surface methodology (RSM) exploratory design. The predicted quadratic models were fitted due to their highly signifi-cant (p < 0.0001) and excellent determination coefficient (R2 = 0.9944). The optimal conditions for producing DMC-rich extract were a ratio of sample to solvent of 1:35 g/mL, a microwave power of 350 W, and a microwave time of 38 min. Under the optimal MAE setting, the DMC content reached 1409 ± 24 µg/g dry sample, which was greater than that of the conventional heat reflux extraction (HRE) (1337 ± 37 µg/g dry sample) and maceration (1225 ± 81 µg/g dry sample). The DMC-rich extract obtained from MAE showed stronger anticancer activities against A549 (human lung cancer cells) and HepG2 (human liver cancer cells) than the individual DMC substance, which makes MAE an effective method for extracting essential phytochemicals from plants in the nature.en_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemistryen_US
dc.subjectPharmacology, Toxicology and Pharmaceuticsen_US
dc.titleMicrowave-Assisted Extraction of Anticancer Flavonoid, 2<sup>′</sup>,4<sup>′</sup>-Dihydroxy-6<sup>′</sup>-methoxy-3<sup>′</sup>,5<sup>′</sup>-dimethyl Chalcone (DMC), Rich Extract from Syzygium nervosum Fruitsen_US
dc.typeJournalen_US
article.title.sourcetitleMoleculesen_US
article.volume27en_US
article.stream.affiliationsNakhon Si Thammarat Rajabhat Universityen_US
article.stream.affiliationsKing Mongkut's University of Technology North Bangkoken_US
article.stream.affiliationsMaejo Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.