Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/72542
Full metadata record
DC FieldValueLanguage
dc.contributor.authorZaid Abdi Alkareem Alyasserien_US
dc.contributor.authorOsama Ahmad Alomarien_US
dc.contributor.authorJoão P. Papaen_US
dc.contributor.authorMohammed Azmi Al-Betaren_US
dc.contributor.authorKarrar Hameed Abdulkareemen_US
dc.contributor.authorMazin Abed Mohammeden_US
dc.contributor.authorSeifedine Kadryen_US
dc.contributor.authorOrawit Thinnukoolen_US
dc.contributor.authorPattaraporn Khuwuthyakornen_US
dc.date.accessioned2022-05-27T08:26:34Z-
dc.date.available2022-05-27T08:26:34Z-
dc.date.issued2022-03-01en_US
dc.identifier.issn14248220en_US
dc.identifier.other2-s2.0-85125931369en_US
dc.identifier.other10.3390/s22062092en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85125931369&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/72542-
dc.description.abstractThe electroencephalogram (EEG) introduced a massive potential for user identification. Several studies have shown that EEG provides unique features in addition to typical strength for spoofing attacks. EEG provides a graphic recording of the brain’s electrical activity that electrodes can capture on the scalp at different places. However, selecting which electrodes should be used is a challenging task. Such a subject is formulated as an electrode selection task that is tackled by optimization methods. In this work, a new approach to select the most representative electrodes is introduced. The proposed algorithm is a hybrid version of the Flower Pollination Algorithm and β-Hill Climbing optimizer called FPAβ-hc. The performance of the FPAβ-hc algorithm is evaluated using a standard EEG motor imagery dataset. The experimental results show that the FPAβ-hc can utilize less than half of the electrode numbers, achieving more accurate results than seven other methods.en_US
dc.subjectBiochemistry, Genetics and Molecular Biologyen_US
dc.subjectChemistryen_US
dc.subjectComputer Scienceen_US
dc.subjectEngineeringen_US
dc.subjectPhysics and Astronomyen_US
dc.titleEEG Channel Selection Based User Identification via Improved Flower Pollination Algorithmen_US
dc.typeJournalen_US
article.title.sourcetitleSensorsen_US
article.volume22en_US
article.stream.affiliationsUniversity of Kufa, Information Technology Research and Development Centreen_US
article.stream.affiliationsAl-Muthanna Universityen_US
article.stream.affiliationsUniversity Of Anbaren_US
article.stream.affiliationsUniversity of Kufaen_US
article.stream.affiliationsUniversity of Sharjahen_US
article.stream.affiliationsAjman Universityen_US
article.stream.affiliationsAl-Balqa Applied Universityen_US
article.stream.affiliationsUniversidade Estadual Paulista "Júlio de Mesquita Filho"en_US
article.stream.affiliationsChiang Mai Universityen_US
article.stream.affiliationsNorrof University Collegeen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.