Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/71909
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorXiaoqiang Wangen_US
dc.contributor.authorHongwei Liuen_US
dc.contributor.authorWoraphon Yamakaen_US
dc.date.accessioned2021-01-27T04:17:26Z-
dc.date.available2021-01-27T04:17:26Z-
dc.date.issued2021-02-01en_US
dc.identifier.issn10902465en_US
dc.identifier.issn10715797en_US
dc.identifier.other2-s2.0-85098461561en_US
dc.identifier.other10.1016/j.ffa.2020.101794en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85098461561&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/71909-
dc.description.abstract© 2020 Elsevier Inc. Let p≠3 be a prime, s, m be positive integers, and λ be a nonzero element of the finite field Fpm. In [22] and [20], when the generator polynomials have one or two different irreducible factors, the Hamming distances of λ-constacyclic codes of length 3ps over Fpm have been considered. In this paper, we obtain that the Hamming distances of the repeated-root λ-constacyclic codes of length lps can be determined by the Hamming distances of the simple-root γ-constacyclic codes of length l, where l is a positive integer and λ=γps. Based on this result, the Hamming distances of the repeated-root λ-constacyclic codes of length 3ps are given when the generator polynomials have three different irreducible factors. Hence, the Hamming distances of all such constacyclic codes are determined. As an application, we obtain all optimal λ-constacyclic codes of length 3ps with respect to the Griesmer bound and the Singleton bound. Among others, several examples show that some of our codes have the best known parameters with respect to the code tables in [19].en_US
dc.subjectEngineeringen_US
dc.subjectMathematicsen_US
dc.titleHamming distances of constacyclic codes of length 3p<sup>s</sup> and optimal codes with respect to the Griesmer and Singleton boundsen_US
dc.typeJournalen_US
article.title.sourcetitleFinite Fields and their Applicationsen_US
article.volume70en_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsHubei Universityen_US
article.stream.affiliationsHuazhong Normal Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.