Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/71434
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNawapon Nakharutaien_US
dc.date.accessioned2021-01-27T03:45:28Z-
dc.date.available2021-01-27T03:45:28Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn16113349en_US
dc.identifier.issn03029743en_US
dc.identifier.other2-s2.0-85096627106en_US
dc.identifier.other10.1007/978-3-030-62509-2_6en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85096627106&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/71434-
dc.description.abstract© 2020, Springer Nature Switzerland AG. (Formula Presented)-maximin, (Formula Presented)-maximax, maximality and interval dominance are well-known criteria for decision making using lower previsions when precise probabilities are not available. This study proposes algorithms for generating a set of gambles that has a precise number of (Formula Presented)-maximin (or (Formula Presented)-maximax) gambles that can be used to generate random decision problems for benchmarking algorithms for finding (Formula Presented)-maximin (or (Formula Presented)-maximax) gambles. Since (Formula Presented)-maximin and (Formula Presented)-maximax imply maximality and interval dominance, the algorithms can also be used as an alternative algorithm for generating random decision problems with pre-determined numbers of maximal and interval dominant gambles.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleAlgorithms for Generating Sets of Gambles for Decision Making with Lower Previsionsen_US
dc.typeBook Seriesen_US
article.title.sourcetitleLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)en_US
article.volume12482 LNAIen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.