Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/71408
Full metadata record
DC FieldValueLanguage
dc.contributor.authorUsa Humphriesen_US
dc.contributor.authorGrienggrai Rajchakiten_US
dc.contributor.authorRamalingam Sriramanen_US
dc.contributor.authorPramet Kaewmesrien_US
dc.contributor.authorPharunyou Chanthornen_US
dc.contributor.authorChee Peng Limen_US
dc.contributor.authorRajendran Samiduraien_US
dc.date.accessioned2021-01-27T03:43:44Z-
dc.date.available2021-01-27T03:43:44Z-
dc.date.issued2020-06-01en_US
dc.identifier.issn20738994en_US
dc.identifier.other2-s2.0-85096214219en_US
dc.identifier.other10.3390/sym12061035en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85096214219&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/71408-
dc.description.abstract© 2020 by the authors. Licensee MDPI, Basel, Switzerland. The main focus of this research is on a comprehensive analysis of robust dissipativity issues pertaining to a class of uncertain stochastic generalized neural network (USGNN) models in the presence of time-varying delays and Markovian jumping parameters (MJPs). In real-world environments, most practical systems are subject to uncertainties. As a result, we take the norm-bounded parameter uncertainties, as well as stochastic disturbances into consideration in our study. To address the task, we formulate the appropriate Lyapunov–Krasovskii functional (LKF), and through the use of effective integral inequalities, simplified linear matrix inequality (LMI) based sufficient conditions are derived. We validate the feasible solutions through numerical examples using MATLAB software. The simulation results are analyzed and discussed, which positively indicate the feasibility and effectiveness of the obtained theoretical findings.en_US
dc.subjectChemistryen_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.subjectPhysics and Astronomyen_US
dc.titleAn extended analysis on robust dissipativity of uncertain stochastic generalized neural networks with markovian jumping parametersen_US
dc.typeJournalen_US
article.title.sourcetitleSymmetryen_US
article.volume12en_US
article.stream.affiliationsThiruvalluvar Universityen_US
article.stream.affiliationsKing Mongkuts University of Technologyen_US
article.stream.affiliationsVel Tech High Tech Dr.Rangarajan Dr.Sakunthala Engineering Collegeen_US
article.stream.affiliationsDeakin Universityen_US
article.stream.affiliationsMaejo Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.