Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/70442
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSanti Tasenaen_US
dc.date.accessioned2020-10-14T08:30:57Z-
dc.date.available2020-10-14T08:30:57Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn01650114en_US
dc.identifier.other2-s2.0-85082683939en_US
dc.identifier.other10.1016/j.fss.2020.03.021en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85082683939&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/70442-
dc.description.abstract© 2020 In this work, we show that two distance functions independently defined on the space of subcopulas are topological equivalent. In this process, we also defined another distance function equivalent to the first two distances. Moreover, all metric spaces of subcopulas with fixed domain under the supremum distance are metric subspaces under this new distance function. We also prove that the Sklar correspondence can be viewed as a Lipschitz map under these metrics. Thus, the rate of convergence of empirical subcopulas can be computed directly from the rate of convergence of empirical distributions. The same holds for other statistics results.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleOn metric spaces of subcopulasen_US
dc.typeJournalen_US
article.title.sourcetitleFuzzy Sets and Systemsen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.