Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/70439
Full metadata record
DC FieldValueLanguage
dc.contributor.authorNachatchapong Kaewsompongen_US
dc.contributor.authorParavee Maneejuken_US
dc.contributor.authorWoraphon Yamakaen_US
dc.date.accessioned2020-10-14T08:30:56Z-
dc.date.available2020-10-14T08:30:56Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn10990526en_US
dc.identifier.issn10762787en_US
dc.identifier.other2-s2.0-85089021591en_US
dc.identifier.other10.1155/2020/6746303en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85089021591&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/70439-
dc.description.abstract© 2020 Nachatchapong Kaewsompong et al. We propose a high-dimensional copula to model the dependence structure of the seemingly unrelated quantile regression. As the conventional model faces with the strong assumption of the multivariate normal distribution and the linear dependence structure, thus, we apply the multivariate exchangeable copula function to relax this assumption. As there are many parameters to be estimated, we consider the Bayesian Markov chain Monte Carlo approach to estimate the parameter interests in the model. Four simulation studies are conducted to assess the performance of our proposed model and Bayesian estimation. Satisfactory results from simulation studies are obtained suggesting the good performance and reliability of the Bayesian method used in our proposed model. The real data analysis is also provided, and the empirical comparison indicates our proposed model outperforms the conventional models in all considered quantile levels.en_US
dc.subjectComputer Scienceen_US
dc.subjectMultidisciplinaryen_US
dc.titleBayesian Estimation of Archimedean Copula-Based sur Quantile Modelsen_US
dc.typeJournalen_US
article.title.sourcetitleComplexityen_US
article.volume2020en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.