Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68465
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Prasit Cholamjiak | en_US |
dc.contributor.author | Suthep Suantai | en_US |
dc.contributor.author | Pongsakorn Sunthrayuth | en_US |
dc.date.accessioned | 2020-04-02T15:27:46Z | - |
dc.date.available | 2020-04-02T15:27:46Z | - |
dc.date.issued | 2020-01-01 | en_US |
dc.identifier.issn | 17358787 | en_US |
dc.identifier.other | 2-s2.0-85079750239 | en_US |
dc.identifier.other | 10.1007/s43037-019-00030-4 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85079750239&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/68465 | - |
dc.description.abstract | © 2019, Tusi Mathematical Research Group (TMRG). In this article, we introduce an explicit parallel algorithm for finding a common element of zeros of the sum of two accretive operators and the set of fixed point of a nonexpansive mapping in the framework of Banach spaces. We prove its strong convergence under some mild conditions. Finally, we provide some applications to the main result. The results presented in this paper extend and improve the corresponding results in the literature. | en_US |
dc.subject | Mathematics | en_US |
dc.title | An explicit parallel algorithm for solving variational inclusion problem and fixed point problem in Banach spaces | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Banach Journal of Mathematical Analysis | en_US |
article.volume | 14 | en_US |
article.stream.affiliations | University of Phayao | en_US |
article.stream.affiliations | Rajamangala University of Technology Thanyaburi (RMUTT) | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.