Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/68462
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPenying Rochanakulen_US
dc.date.accessioned2020-04-02T15:27:45Z-
dc.date.available2020-04-02T15:27:45Z-
dc.date.issued2020-01-01en_US
dc.identifier.issn16870425en_US
dc.identifier.issn01611712en_US
dc.identifier.other2-s2.0-85079067889en_US
dc.identifier.other10.1155/2020/4879108en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85079067889&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/68462-
dc.description.abstract© 2020 Penying Rochanakul. Frameproof codes were first introduced by Boneh and Shaw in 1998 in the context of digital fingerprinting to protect copyrighted materials. These digital fingerprints are generally denoted as codewords in Qn, where Q is an alphabet of size q and n is a positive integer. A 2-frameproof code is a code C such that any 2 codewords in C cannot form a new codeword under a particular rule. Thus, no pair of users can frame a user who is not a member of the coalition. This paper concentrates on the upper bound for the size of a q-ary 2-frameproof code of length 4. Our new upper bound shows that C≤2q2-2q+1 when q is odd and q>10.en_US
dc.subjectMathematicsen_US
dc.titleNew Bounds on 2-Frameproof Codes of Length 4en_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Mathematics and Mathematical Sciencesen_US
article.volume2020en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.