Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/68449
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Choonkil Park | en_US |
dc.contributor.author | Siriluk Paokanta | en_US |
dc.contributor.author | Raweerote Suparatulatorn | en_US |
dc.date.accessioned | 2020-04-02T15:27:36Z | - |
dc.date.available | 2020-04-02T15:27:36Z | - |
dc.date.issued | 2020-06-01 | en_US |
dc.identifier.issn | 16617746 | en_US |
dc.identifier.issn | 16617738 | en_US |
dc.identifier.other | 2-s2.0-85081725094 | en_US |
dc.identifier.other | 10.1007/s11784-020-0766-z | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081725094&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/68449 | - |
dc.description.abstract | © 2020, Springer Nature Switzerland AG. Using the fixed point method and the direct method, we prove the Hyers–Ulam stability of biderivations and bihomomorphisms in Banach algebras and unital C∗-algebras, associated with the bi-additive functional inequality: ‖f(x+y,z+w)+f(x+y,z-w)+f(x-y,z+w)+f(x-y,z-w)-4f(x,z)‖≤∥s(2f(x+y,z-w)+2f(x-y,z+w)-4f(x,z)+4f(y,w))∥,where s is a fixed nonzero complex number with | s| < 1. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Ulam stability of bihomomorphisms and biderivations in Banach algebras | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Journal of Fixed Point Theory and Applications | en_US |
article.volume | 22 | en_US |
article.stream.affiliations | Hanyang University | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.