Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/68281
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPreeyaporn Poldornen_US
dc.contributor.authorYutthana Wongnongwaen_US
dc.contributor.authorSupawadee Namuangruken_US
dc.contributor.authorNawee Kungwanen_US
dc.contributor.authorVladimir B. Golovkoen_US
dc.contributor.authorBurapat Inceesungvornen_US
dc.contributor.authorSiriporn Jungsuttiwongen_US
dc.date.accessioned2020-04-02T15:24:19Z-
dc.date.available2020-04-02T15:24:19Z-
dc.date.issued2020-04-05en_US
dc.identifier.issn0926860Xen_US
dc.identifier.other2-s2.0-85081200343en_US
dc.identifier.other10.1016/j.apcata.2020.117505en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85081200343&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/68281-
dc.description.abstract© 2020 Elsevier B.V. We report an advanced configurational sampling method that uses density functional theory (DFT) to design a highly active catalyst for conversion of CO into less-harmful products, under ambient conditions. The reaction pathway for CO oxidation by O2 on ultra-small 13-Atom bimetallic Ag7Au6 cluster has two possible mechanisms, namely, stepwise adsorption and co-adsorption. The rate-determining step involving with CO[sbnd]O association via a co-adsorption process shows a significantly small barrier of 0.21 eV. Furthermore, microkinetic simulation results suggest that CO oxidation rates and the optimal temperature for CO oxidation exhibit both greater performances for the co-adsorption pathway, compared to that for a stepwise-adsorption mechanism. Our new proposed mechanism suggests that the bimetallic Ag7Au6 catalyst is active for CO oxidation at room temperatures. Thus, it has potential application as a highly-active catalyst for conversion of carbon monoxide into less toxic CO2.en_US
dc.subjectChemical Engineeringen_US
dc.titleTheoretical mechanistic study of CO catalytic oxidation by O<inf>2</inf> on an ultra-small 13-atom bimetallic Ag<inf>7</inf>Au<inf>6</inf> clusteren_US
dc.typeJournalen_US
article.title.sourcetitleApplied Catalysis A: Generalen_US
article.volume595en_US
article.stream.affiliationsUbon Rajathanee Universityen_US
article.stream.affiliationsUniversity of Canterburyen_US
article.stream.affiliationsThailand National Nanotechnology Centeren_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.