Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/68126
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThodsaporn Kumduangen_US
dc.contributor.authorSorasak Leeratanavaleeen_US
dc.date.accessioned2020-04-02T15:21:08Z-
dc.date.available2020-04-02T15:21:08Z-
dc.date.issued2019-11-01en_US
dc.identifier.issn01253395en_US
dc.identifier.other2-s2.0-85075421526en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075421526&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/68126-
dc.description.abstract© 2019, Prince of Songkla University. All rights reserved. An algebraic system is a structure which consists of a nonempty set together with a sequence of operations and a sequence of relations on this set. Properties of this structure are expressed in terms and formulas. In this paper, we show that the set of all linear hypersubstitutions for algebraic systems of the type ((n), (2)) with a binary operation on this set and the identity element forms a monoid. Finally, we characterize idempotent and regular elements on the monoid.en_US
dc.subjectMultidisciplinaryen_US
dc.titleMonoid of linear hypersubstitutions for algebraic systems of type ((n), (2)) and its regularityen_US
dc.typeJournalen_US
article.title.sourcetitleSongklanakarin Journal of Science and Technologyen_US
article.volume41en_US
article.stream.affiliationsMahidol Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.