Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67962
Title: | Heuristic neural network approach in histological sections detection of hydatidiform mole |
Authors: | Patison Palee Bernadette Sharp Leonard Noriega Neil Sebire Craig Platt |
Authors: | Patison Palee Bernadette Sharp Leonard Noriega Neil Sebire Craig Platt |
Keywords: | Medicine |
Issue Date: | 1-Oct-2019 |
Abstract: | © 2019 Society of Photo-Optical Instrumentation Engineers (SPIE). A heuristic-based, multineural network (MNN) image analysis as a solution to the problematical diagnosis of hydatidiform mole (HM) is presented. HM presents as tumors in placental cell structures, many of which exhibit premalignant phenotypes (choriocarcinoma and other conditions). HM is commonly found in women under age 17 or over 35 and can be partial HM or complete HM. Appropriate treatment is determined by correct categorization into PHM or CHM, a difficult task even for expert pathologists. Image analysis combined with pattern recognition techniques has been applied to the problem, based on 15 or 17 image features. The use of limited data for training and validation set was optimized using a k-fold validation technique allowing performance measurement of different MNN configurations. The MNN technique performed better than human experts at the categorization for both the 15- and 17-feature data, promising greater diagnostic consistency, and further improvements with the availability of larger datasets. |
URI: | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077498964&origin=inward http://cmuir.cmu.ac.th/jspui/handle/6653943832/67962 |
ISSN: | 23294310 23294302 |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.