Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67923
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHai Q. Dinhen_US
dc.contributor.authorSampurna Satpatien_US
dc.contributor.authorAbhay Kumar Singhen_US
dc.contributor.authorWoraphon Yamakaen_US
dc.date.accessioned2020-04-02T15:11:42Z-
dc.date.available2020-04-02T15:11:42Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn02194988en_US
dc.identifier.other2-s2.0-85074929597en_US
dc.identifier.other10.1142/S0219498820502096en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074929597&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67923-
dc.description.abstract© 2020 World Scientific Publishing Company. Let p be an odd prime, s and m be positive integers and λ be a nonzero element of pm. The λ-constacyclic codes of length ps over pm are linearly ordered under set theoretic inclusion as ideals of the chain ring pm[x]/(xps - λ). Using this structure, the symbol-triple distances of all such λ-constacyclic codes are established in this paper. All maximum distance separable symbol-triple constacyclic codes of length ps are also determined as an application.en_US
dc.subjectMathematicsen_US
dc.titleSymbol-triple distance of repeated-root constacyclic codes of prime power lengthsen_US
dc.typeJournalen_US
article.title.sourcetitleJournal of Algebra and its Applicationsen_US
article.stream.affiliationsTon-Duc-Thang Universityen_US
article.stream.affiliationsIndian Institute of Technology (Indian School of Mines), Dhanbaden_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.