Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67919
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSundusit Saekowen_US
dc.contributor.authorSanti Tasenaen_US
dc.date.accessioned2020-04-02T15:11:27Z-
dc.date.available2020-04-02T15:11:27Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn2651477Xen_US
dc.identifier.other2-s2.0-85077195800en_US
dc.identifier.other10.15672/hujms.464636en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077195800&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67919-
dc.description.abstract© 2019, Hacettepe University. All rights reserved. In this work, we prove that Bernstein estimator always converges to the true copula under Sobolev distances. The rate of convergences is provided in case the true copula has bounded second order derivatives. Simulation study has also been done for Clayton copulas. We then use this estimator to estimate measures of complete dependence for weather data. The result suggests a nonlinear relationship between the dust density in Chiang Mai, Thailand and the temperature and the humidity level.en_US
dc.subjectMathematicsen_US
dc.titleSobolev convergence of empirical Bernstein copulasen_US
dc.typeJournalen_US
article.title.sourcetitleHacettepe Journal of Mathematics and Statisticsen_US
article.volume48en_US
article.stream.affiliationsSouth Carolina Commission on Higher Educationen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.