Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67917
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Teerapong Suksumran | en_US |
dc.contributor.author | Oğuzhan Demirel | en_US |
dc.date.accessioned | 2020-04-02T15:11:27Z | - |
dc.date.available | 2020-04-02T15:11:27Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.issn | 13036149 | en_US |
dc.identifier.issn | 13000098 | en_US |
dc.identifier.other | 2-s2.0-85077531230 | en_US |
dc.identifier.other | 10.3906/mat-1902-13 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077531230&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/67917 | - |
dc.description.abstract | © TUBITAK. The complex unit disk D = z ∈ C: |z| < 1 is endowed with Mobius addition ⊕M defined by We prove that the metric dT defined on D by dT (w, z) = tan -1 |-w ⊕M z| is an invariant of Mobius transformations carrying D onto itself. We also prove that (D, dT) and (D, dp), where dp denotes the Poincare metric, have the same isometry group and then classify the isometries of (D, dT). | en_US |
dc.subject | Mathematics | en_US |
dc.title | A metric invariant of mobius transformations | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Turkish Journal of Mathematics | en_US |
article.volume | 43 | en_US |
article.stream.affiliations | Afyon Kocatepe Üniversitesi | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.