Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67915
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeerapong Suksumranen_US
dc.date.accessioned2020-04-02T15:11:16Z-
dc.date.available2020-04-02T15:11:16Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn15324125en_US
dc.identifier.issn00927872en_US
dc.identifier.other2-s2.0-85073822408en_US
dc.identifier.other10.1080/00927872.2019.1662916en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85073822408&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67915-
dc.description.abstract© 2019, © 2019 Taylor & Francis Group, LLC. In this article, we show that any finite gyrogroup can be represented on a space of complex-valued functions. In particular, we prove that any linear representation of a finite gyrogroup on a finite-dimensional complex inner product space is unitary and hence is completely reducible using strong connections between linear actions of groups and gyrogroups. Also, we provide an example of a unitary representation of an arbitrary finite gyrogroup, which resembles the group-theoretic left regular representation.en_US
dc.subjectMathematicsen_US
dc.titleComplete reducibility of gyrogroup representationsen_US
dc.typeJournalen_US
article.title.sourcetitleCommunications in Algebraen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.