Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/67914
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Teerapong Suksumran | en_US |
dc.contributor.author | Sayan Panma | en_US |
dc.date.accessioned | 2020-04-02T15:11:15Z | - |
dc.date.available | 2020-04-02T15:11:15Z | - |
dc.date.issued | 2019-01-01 | en_US |
dc.identifier.issn | 09381279 | en_US |
dc.identifier.other | 2-s2.0-85075338498 | en_US |
dc.identifier.other | 10.1007/s00200-019-00405-y | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075338498&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/67914 | - |
dc.description.abstract | © 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Let M be a left module over a ring R with identity and let β be a skew-symmetric R-bilinear form on M. The generalized Heisenberg group consists of the set M× M× R= { (x, y, t) : x, y∈ M, t∈ R} with group law (x1,y1,t1)(x2,y2,t2)=(x1+x2,y1+y2,t1+β(x1,y2)+t2).Under the assumption of 2 being a unit in R, we prove that the generalized Heisenberg group decomposes into a product of its subset and subgroup, similar to the well-known polar decomposition in linear algebra. This leads to a parametrization of the generalized Heisenberg group that resembles a parametrization of the Lorentz transformation group by relative velocities and space rotations. | en_US |
dc.subject | Mathematics | en_US |
dc.title | Parametrization of generalized Heisenberg groups | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Applicable Algebra in Engineering, Communications and Computing | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.