Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67914
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeerapong Suksumranen_US
dc.contributor.authorSayan Panmaen_US
dc.date.accessioned2020-04-02T15:11:15Z-
dc.date.available2020-04-02T15:11:15Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn09381279en_US
dc.identifier.other2-s2.0-85075338498en_US
dc.identifier.other10.1007/s00200-019-00405-yen_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85075338498&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67914-
dc.description.abstract© 2019, Springer-Verlag GmbH Germany, part of Springer Nature. Let M be a left module over a ring R with identity and let β be a skew-symmetric R-bilinear form on M. The generalized Heisenberg group consists of the set M× M× R= { (x, y, t) : x, y∈ M, t∈ R} with group law (x1,y1,t1)(x2,y2,t2)=(x1+x2,y1+y2,t1+β(x1,y2)+t2).Under the assumption of 2 being a unit in R, we prove that the generalized Heisenberg group decomposes into a product of its subset and subgroup, similar to the well-known polar decomposition in linear algebra. This leads to a parametrization of the generalized Heisenberg group that resembles a parametrization of the Lorentz transformation group by relative velocities and space rotations.en_US
dc.subjectMathematicsen_US
dc.titleParametrization of generalized Heisenberg groupsen_US
dc.typeJournalen_US
article.title.sourcetitleApplicable Algebra in Engineering, Communications and Computingen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.