Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67912
Full metadata record
DC FieldValueLanguage
dc.contributor.authorTeerapong Suksumranen_US
dc.date.accessioned2020-04-02T15:11:15Z-
dc.date.available2020-04-02T15:11:15Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn19316836en_US
dc.identifier.issn19316828en_US
dc.identifier.other2-s2.0-85076721163en_US
dc.identifier.other10.1007/978-3-030-31339-5_20en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85076721163&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67912-
dc.description.abstract© 2019, Springer Nature Switzerland AG. In this article, we indicate that the open unit ball in n-dimensional Euclidean space ℝn admits norm-like functions compatible with the Poincaré and Beltrami–Klein metrics. This leads to the notion of a normed gyrogroup, similar to that of a normed group in the literature. We then examine topological and geometric structures of normed gyrogroups. In particular, we prove that the normed gyrogroups are homogeneous and form left invariant metric spaces and derive a version of the Mazur–Ulam theorem. We also give certain sufficient conditions, involving the right-gyrotranslation inequality and Klee’s condition, for a normed gyrogroup to be a topological gyrogroup.en_US
dc.subjectMathematicsen_US
dc.titleOn Metric Structures of Normed Gyrogroupsen_US
dc.typeBook Seriesen_US
article.title.sourcetitleSpringer Optimization and Its Applicationsen_US
article.volume154en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.