Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67909
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPanasun Manoroten_US
dc.contributor.authorPhakdi Charoensawanen_US
dc.contributor.authorSupreedee Dangskulen_US
dc.date.accessioned2020-04-02T15:10:47Z-
dc.date.available2020-04-02T15:10:47Z-
dc.date.issued2019-08-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85073270998en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85073270998&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67909-
dc.description.abstract© 2019 by the Mathematical Association of Thailand. All rights reserved. This paper presents two linear finite difference schemes for the so-called Rosenau-Kawahara equation, modified from a linear scheme by Hu et al. in 2014, under a pseudo-compact method. Existence and uniqueness of solutions generated by both schemes are proved. It is shown that the first scheme possesses some conservation properties for mass and energy, whereas the other proposed scheme provides only mass conservation. Some discussions on stability are given, which reveal that numerical solutions are stable with respect to ||·||∞. It is also shown that pseudo-compactness allows some terms in the schemes to reach fourth-order convergence, even though the numerical solutions is of second-order convergence overall. Furthermore, numerical simulations are illustrated confirming that our schemes induce some improvements over the existing scheme by Hu et al. on precision and cost.en_US
dc.subjectMathematicsen_US
dc.titleNumerical solutions to the Rosenau-Kawahara equation for shallow water waves via pseudo-compact methodsen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume17en_US
article.stream.affiliationsSouth Carolina Commission on Higher Educationen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.