Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67892
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRakbhoom Chousurinen_US
dc.contributor.authorThanasak Mouktonglangen_US
dc.contributor.authorPhakdi Charoensawanen_US
dc.date.accessioned2020-04-02T15:10:28Z-
dc.date.available2020-04-02T15:10:28Z-
dc.date.issued2019-12-01en_US
dc.identifier.issn16860209en_US
dc.identifier.other2-s2.0-85077596524en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85077596524&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67892-
dc.description.abstract© 2019 by the Mathematical Association of Thailand. All rights reserved. In this paper, we introduce a conservative difference method for solving the Rosenau-KdV equation. The existence of the approximate solution from the difference scheme is shown. We also prove the stability and convergence of this scheme. The presented method gives second-and fourth-order accurate in time and space, respectively. Numerical examples demonstrate the theoretical results.en_US
dc.subjectMathematicsen_US
dc.titleFourth-order conservative algorithm for nonlinear wave propagation: The rosenau-KdV equationen_US
dc.typeJournalen_US
article.title.sourcetitleThai Journal of Mathematicsen_US
article.volume17en_US
article.stream.affiliationsSouth Carolina Commission on Higher Educationen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.