Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67724
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPattaraporn Chuanchaien_US
dc.contributor.authorPaskorn Champraserten_US
dc.contributor.authorKitimapond Rattanadoungen_US
dc.date.accessioned2020-04-02T15:01:54Z-
dc.date.available2020-04-02T15:01:54Z-
dc.date.issued2019-07-01en_US
dc.identifier.other2-s2.0-85073229398en_US
dc.identifier.other10.1109/ICoICT.2019.8835214en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85073229398&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67724-
dc.description.abstract© 2019 IEEE. The air pollution problem have become the major global environmental problem. It also impacts to health, economic, traffic, and tourism of the nation. The air quality monitoring stations have been applied to measure the air quality factors in their surrounding area. However, the number of monitoring stations in developing countries may not be enough to cover the area. This paper proposes a framework to spatially predict the particulate matter concentration in the area without monitoring station. The proposed framework, called PAMS framework, consists of two components, which are 1) DUSTRY which is a particulate matter monitoring station to be deployed in a reference location, and 2) SPM which is a spatial prediction model to apply spatial interpolation technique and machine learning technique to provide the particulate matter concentration value in the area without monitoring station. This paper also explores the results from the variety of components in the PAMS. Two spatial interpolation techniques (i.e., IDW:Inverse Distance Weigh and Kriging) are compared. The evaluation results show that the the PAMS can spatially predict particulate matter concentration value with the average 10.16% error by using the Kriging technique with seven inputs for machine learning.en_US
dc.subjectComputer Scienceen_US
dc.titleThe particulate matter concentration spatial prediction using interpolation techniques with machine learningen_US
dc.typeConference Proceedingen_US
article.title.sourcetitle2019 7th International Conference on Information and Communication Technology, ICoICT 2019en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.