Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67712
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRuofan Liaoen_US
dc.contributor.authorPetchaluck Boonyakunakornen_US
dc.contributor.authorSongsak Sriboonchiitaen_US
dc.date.accessioned2020-04-02T15:01:47Z-
dc.date.available2020-04-02T15:01:47Z-
dc.date.issued2019-08-28en_US
dc.identifier.other2-s2.0-85074852211en_US
dc.identifier.other10.1145/3358528.3358545en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85074852211&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67712-
dc.description.abstract© 2019 Association for Computing Machinery. This study compares the accuracy of the single-regime and two-regime Bayesian Markov Switching GARCH models, in the forecasting the Value-at-Risk (VaR) of Shanghai Stock Exchange (SSE). The research addresses the question of whether considering the structural change for stock markets with high volatility improves the accuracy of the forecasting VaR. To take account of regime changes in stock market, we employ Markov-switching model with GARCH model. Regarding to DIC model selection, two-regime GJR model with Student-t distribution is chosen indicating that it is the best-fitted to the data. The estimated results confirm that the two-regime switching models beat the single regime switching model in forecasting VaR of SSE. Thus, the Markov switching model with GARCH model appears to improve the VaR forecasting of SSE.en_US
dc.subjectComputer Scienceen_US
dc.titleVaR of SSE returns based on Bayesian markov-switching GARCH approachen_US
dc.typeConference Proceedingen_US
article.title.sourcetitleACM International Conference Proceeding Seriesen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.