Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/67705
Full metadata record
DC FieldValueLanguage
dc.contributor.authorThierry Denœuxen_US
dc.contributor.authorOrakanya Kanjanatarakulen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2020-04-02T15:01:44Z-
dc.date.available2020-04-02T15:01:44Z-
dc.date.issued2019-10-01en_US
dc.identifier.issn0888613Xen_US
dc.identifier.other2-s2.0-85073707748en_US
dc.identifier.other10.1016/j.ijar.2019.07.009en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85073707748&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/67705-
dc.description.abstract© 2019 Elsevier Inc. The evidential K nearest neighbor classifier is based on discounting evidence from learning instances in a neighborhood of the pattern to be classified. To adapt the method to partially supervised data, we propose to replace the classical discounting operation by contextual discounting, a more complex operation based on as many discount rates as classes. The parameters of the method are tuned by maximizing the evidential likelihood, an extension of the likelihood function based on uncertain data. The resulting classifier is shown to outperform alternative methods in partially supervised learning tasks.en_US
dc.subjectComputer Scienceen_US
dc.subjectMathematicsen_US
dc.titleA new evidential K-nearest neighbor rule based on contextual discounting with partially supervised learningen_US
dc.typeJournalen_US
article.title.sourcetitleInternational Journal of Approximate Reasoningen_US
article.volume113en_US
article.stream.affiliationsChiang Mai Rajabhat Universityen_US
article.stream.affiliationsShanghai Universityen_US
article.stream.affiliationsUniversite de Technologie de Compiègneen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.