Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/66701
Title: Novel algorithm based on modification of Galerkin finite element method to general Rosenau-RLW equation in (2 + 1)-dimensions
Authors: N. Tamang
B. Wongsaijai
T. Mouktonglang
K. Poochinapan
Authors: N. Tamang
B. Wongsaijai
T. Mouktonglang
K. Poochinapan
Keywords: Mathematics
Issue Date: 1-Jan-2019
Abstract: © 2019 IMACS In this research, the presented method combines advantages of the finite element and three-level finite difference techniques to obtain the solution of the two-dimensional general Rosenau-RLW equation. An important point is that nevertheless the two-dimensional general Rosenau-RLW is a non-linear equation, but with the proposed scheme we are able to linearize this system and efficiently solve it due to the implicit nature of the system of equations. In addition, the existence and uniqueness of the approximate solution are approved. The convergence and stability of the approximate solution are also examined. The general formulation of the procedure is given and numerical results are carried out to confirm the accuracy of our theoretical results and the efficiency of the scheme.
URI: https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85071974602&origin=inward
http://cmuir.cmu.ac.th/jspui/handle/6653943832/66701
ISSN: 01689274
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.