Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/66697
Full metadata record
DC FieldValueLanguage
dc.contributor.authorLimpapat Bussabanen_US
dc.contributor.authorAttapol Kaewkhaoen_US
dc.contributor.authorSuthep Suantaien_US
dc.date.accessioned2019-09-16T12:55:32Z-
dc.date.available2019-09-16T12:55:32Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn15612848en_US
dc.identifier.other2-s2.0-85071197008en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85071197008&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/66697-
dc.description.abstract© 2019, Institute of Mathematics, Academy of Sciences Moldova. All rights reserved. Gyrogroup is a generalization of group. It is well-known that any group can be viewed as a gyrogroup with trivial gyroautomorphism. In this article, the Cayley graphs of gyrogroups are discussed and some well-known properties in Cayley graphs of groups will be proved for Cayley graphs of gyrogroups.en_US
dc.subjectMathematicsen_US
dc.titleCayley graphs of gyrogroupsen_US
dc.typeJournalen_US
article.title.sourcetitleQuasigroups and Related Systemsen_US
article.volume27en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.