Please use this identifier to cite or link to this item:
http://cmuir.cmu.ac.th/jspui/handle/6653943832/66695
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Theechalit Binaree | en_US |
dc.contributor.author | Itthichai Preechawuttipong | en_US |
dc.contributor.author | Emilien Azéma | en_US |
dc.date.accessioned | 2019-09-16T12:55:10Z | - |
dc.date.available | 2019-09-16T12:55:10Z | - |
dc.date.issued | 2019-07-15 | en_US |
dc.identifier.issn | 24700053 | en_US |
dc.identifier.issn | 24700045 | en_US |
dc.identifier.other | 2-s2.0-85070072439 | en_US |
dc.identifier.other | 10.1103/PhysRevE.100.012904 | en_US |
dc.identifier.uri | https://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85070072439&origin=inward | en_US |
dc.identifier.uri | http://cmuir.cmu.ac.th/jspui/handle/6653943832/66695 | - |
dc.description.abstract | © 2019 American Physical Society. Using bi-dimensional discrete element simulations, the shear strength and microstructure of granular mixtures composed of particles of different shapes are systematically analyzed as a function of the proportion of grains of a given number of sides and the combination of different shapes (species) in one sample. We varied the angularity of the particles by varying the number of sides of the polygons from 3 (triangles) up to 20 (icosagons) and disks. The samples analyzed were built keeping in mind the following cases: (1) increase of angularity and species starting from disks; (2) decrease of angularity and increase of species starting from triangles; (3) random angularity and increase of species starting from disks and from polygons. The results show that the shear strength vary monotonically with increasing numbers of species (it may increase or decrease), even in the random mixtures (case 3). At the micro-scale, the variation in shear strength as a function of the number of species is due to different mechanisms depending on the cases analyzed. It may result from the increase of both the geometrical and force anisotropies, from only a decrease of frictional anisotropy, or from compensation mechanisms involving geometrical and force anisotropies. | en_US |
dc.subject | Mathematics | en_US |
dc.subject | Physics and Astronomy | en_US |
dc.title | Effects of particle shape mixture on strength and structure of sheared granular materials | en_US |
dc.type | Journal | en_US |
article.title.sourcetitle | Physical Review E | en_US |
article.volume | 100 | en_US |
article.stream.affiliations | Laboratoire de Mécanique et Génie Civil, Université de Montpellier | en_US |
article.stream.affiliations | Chiang Mai University | en_US |
Appears in Collections: | CMUL: Journal Articles |
Files in This Item:
There are no files associated with this item.
Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.