Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/66176
Full metadata record
DC FieldValueLanguage
dc.contributor.authorParastoo Zangenehmehren_US
dc.contributor.authorAli Farajzadehen_US
dc.contributor.authorSeyed Mansour Vaezpouren_US
dc.date.accessioned2019-08-21T09:18:23Z-
dc.date.available2019-08-21T09:18:23Z-
dc.date.issued2015en_US
dc.identifier.citationChiang Mai Journal of Science 42, 4 (Oct 2015), 1038 - 1043en_US
dc.identifier.issn0125-2526en_US
dc.identifier.urihttp://it.science.cmu.ac.th/ejournal/dl.php?journal_id=6259en_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/66176-
dc.description.abstractIn this paper, some fixed point theorems for generalized contractions in cone metric spaces are provided. The normal condition on the underling cone is omitted. Moreover, the equivalency between the ordered boundedness and topologically boundedness, without using normality on the cone, for a subset of an ordered topological vector space is presented. The results of this article can be considered as the extension of [T. Suzuki, A generalized Banach contraction principle that characterizes metric completeness, Proc. Amer. Math. Soc., 136(5) (2008), 1861-1869], [M. Kikkawa and T. Suzuki, Three fixed point theorems for generalized contractions with constants in complete metric spaces, Nonlinear Anal., 69(9) (2008), 2942-2949] and [A.P. Farajzadeh, A. Amini-Harandi, D. Baleanu, Fixed point theory for generalized contractions in cone metric spaces, Commun. Nonlinear. Sci. Numer. Simulat. 17(2)(2012) 708-712].en_US
dc.language.isoEngen_US
dc.publisherScience Faculty of Chiang Mai Universityen_US
dc.subjectCone metric spacesen_US
dc.subjecttopologically boundeden_US
dc.subjectordered boundeden_US
dc.subjectHausdorf metricen_US
dc.subjectnormal coneen_US
dc.subjectnonlinear scalarization functionen_US
dc.titleOn fixed point theory for generalized contractions in cone metric spaces via scalarizingen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.