Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65524
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSukrit Thongkairaten_US
dc.contributor.authorWoraphon Yamakaen_US
dc.contributor.authorSongsak Sriboonchittaen_US
dc.date.accessioned2019-08-05T04:35:00Z-
dc.date.available2019-08-05T04:35:00Z-
dc.date.issued2019-01-01en_US
dc.identifier.issn1860949Xen_US
dc.identifier.other2-s2.0-85065623405en_US
dc.identifier.other10.1007/978-3-030-04200-4_58en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85065623405&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65524-
dc.description.abstract© Springer Nature Switzerland AG 2019. This paper aims to use the Bayesian estimation as an alternative method for formulating and estimating mixed copula models. This method has claimed to be more efficient than the conventional maximum likelihood estimator as it can deal with the high dimension copula and large parameter estimates under limited sample. In this study, we present various mixed copula functions constructed from both Elliptical and Archimedean copulas. We employ a simulation study to investigate the performance of this estimator for comparison with the maximum likelihood estimator. The results show that the Bayesian estimation is considerably more accurate than maximum likelihood estimator in various scenarios. Finally, we extend the Bayesian mixed copula to the real data and show that our approach perform well in this real data analysis.en_US
dc.subjectComputer Scienceen_US
dc.titleBayesian approach for mixture copula modelen_US
dc.typeBook Seriesen_US
article.title.sourcetitleStudies in Computational Intelligenceen_US
article.volume809en_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.