Please use this identifier to cite or link to this item: http://cmuir.cmu.ac.th/jspui/handle/6653943832/65483
Full metadata record
DC FieldValueLanguage
dc.contributor.authorWanpen Khongpeten_US
dc.contributor.authorSomkid Penchareeen_US
dc.contributor.authorChanida Puangpilaen_US
dc.contributor.authorSupaporn Kradtap Hartwellen_US
dc.contributor.authorSomchai Lapanantnoppakhunen_US
dc.contributor.authorJaroon Jakmuneeen_US
dc.date.accessioned2019-08-05T04:34:02Z-
dc.date.available2019-08-05T04:34:02Z-
dc.date.issued2019-06-01en_US
dc.identifier.issn0026265Xen_US
dc.identifier.other2-s2.0-85063209759en_US
dc.identifier.other10.1016/j.microc.2019.03.040en_US
dc.identifier.urihttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85063209759&origin=inwarden_US
dc.identifier.urihttp://cmuir.cmu.ac.th/jspui/handle/6653943832/65483-
dc.description.abstract© 2019 A simple and compact microfluidic hydrodynamic sequential injection system with a colorimetric detection has been developed for the consecutive determination of phosphate and ammonium in water samples based on molybdenum blue and Berthelot methods. A light-emitting diode as a light source and light dependent resistor light sensor were mounted onto the acrylic microfluidic unit for on-line sample and reagents mixing. This portable and miniaturized analytical system was operated automatically by computerized control switching of solenoid valves. Under the optimum operational condition, a linear calibration graph of phosphate and ammonium (as phosphorus, P, and nitrogen, N) in the range of 0.2–3.0 mg P L −1 and 0.3–4.0 mg N L −1 , were achieved with a sample-throughput of 12 h −1 . Limit of detection values for phosphate and ammonium were 0.18 and 0.27 mg L −1 , respectively. The developed system provides a good precision with relative standard deviations of 2.9 and 4.1% for 11 replicated injections of 1 mg P L −1 and 2 mg N L −1 , respectively. Percent recoveries of the analysis of phosphate and ammonium were obtained in the range of 93.5–109.4 and 92.4–107.0, respectively. The developed system offers a compact, durable, cost-effective instrument, with low reagents consumption, that is suitable for monitoring water quality.en_US
dc.subjectChemistryen_US
dc.titleA compact hydrodynamic sequential injection system for consecutive on-line determination of phosphate and ammoniumen_US
dc.typeJournalen_US
article.title.sourcetitleMicrochemical Journalen_US
article.volume147en_US
article.stream.affiliationsUbon Rajathanee Universityen_US
article.stream.affiliationsXavier Universityen_US
article.stream.affiliationsChiang Mai Universityen_US
Appears in Collections:CMUL: Journal Articles

Files in This Item:
There are no files associated with this item.


Items in CMUIR are protected by copyright, with all rights reserved, unless otherwise indicated.